
 

  

Abstract—A new application of the NN ensemble approach is 
presented. It is applied to NN emulations of model physics in 
complex numerical climate models, and aimed at improving the 
accuracy of climate simulations. In particular, this approach is 
applied to NN emulations of the long wave radiation of the 
widely used National Center for Atmospheric Research 
Community Atmospheric Model.  It is shown that practically 
all individual neural network emulations that we have trained 
in the process of development an optimal NN LWR emulation 
can be used within the NN ensemble approach for climate 
simulation. Using the NN ensemble results in a significant 
reduction of climate simulation errors, namely: the systematic 
and random errors, the magnitudes of the extreme errors or 
outliers and, in general, the number of large errors. 

I. INTRODUCTION 
 variety of important practical applications of neural 
networks (NN) in geosciences [2-5, 10], including 

those of the numerical climate model components 
considered in this paper, may be treated mathematically as a 
mapping between two vectors X (input vector) and Y (output 
vector) and symbolically can be written as: 

 
(1) 

                                                    
The simplest multi-layer perceptron (MLP) neural network 
(NN) is a generic analytical nonlinear approximation or 
model for mapping [1], like the mapping (1).   

In the context of our application, we developed NN 
emulations of climate model physics [5] for the widely used 
National Center for Atmospheric Research (NCAR) 
Community Atmospheric Model (CAM). Specifically, a 
number of the NN emulations of the original long wave 
radiation (LWR) (mapping like (1)), have been individually 
trained, with slightly different approximation and 
interpolation accuracies. In this study, we investigate the 
ability of NN ensembles, created from these NN emulations, 
to provide a better approximation and interpolation than 
their individual members and, most importantly, a better 
accuracy of climate simulation. 

As a nonlinear model or nonlinear approximation, the NN 
approximation problem allows for multiple solutions or for 
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multiple NN emulations of the same LWR.  For example, 
the original LWR, used in NCAR CAM, can be 
approximated with NNs with different numbers of hidden 
neurons, with different weights (resulting from the NN 
training with different initializations), different partitions of 
the training set, etc.  At the same time, these multiple NNs 
may be different in terms of other criteria providing 
complementary information about the target mapping.  The 
availability of multiple NN emulations, providing 
additional/complimentary information about the target 
mapping, opens an attractive opportunity of introducing an 
ensemble approach. It allows for integrating the 
complimentary information, contained in the individual 
ensemble members, into an ensemble that “knows” more 
about or represents the original LWR better than each of the 
individual ensemble members (a particular NN emulation).   
Moreover, the NN ensemble, when it is used in a climate 
model instead of a single NN emulation of the original 
LWR, is expected to provide a better accuracy of the climate 
simulation.  

An ensemble of NNs consists of a set of members, which 
are individually trained NNs.  They are combined when 
applied to a new input data to improve the generalization 
(interpolation) ability.  The previous research has shown that 
an ensemble is often more accurate than any or most of the 
individual ensemble members. Different ways of combining 
NN ensemble members into the ensemble have been 
developed and investigated [7].  In this work, we used a 
conservative ensemble [15] where simple (with equal 
weights for all members) averaging of the members provides 
the ensemble mean and other statistics. 

The previous research also suggests that any mechanism 
that causes some randomness in or perturbation for the 
formation of NN ensemble members, can be used to form an 
accurate NN ensemble [8].  For example, ensemble members 
can be created by training different members: (a) on 
different subsets of the training set [8]; (b) on different sub-
domains of the training domain; (c) using NNs with different 
topology (different number of hidden neurons) [9]; (d) using 
NNs with the same architecture but with different initial 
conditions for NN weights [10,11].   

Most of the previous studies with NN ensembles have 
been done in the context of solving classification [10,13] or 
prediction of time series problems [7,11].  Also, the NN 
ensemble technique has been recently applied to improve the 
accuracy of the NN Jacobian and NN emulations for an 
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oceanic data assimilation application [12].  
In section 2 of this paper we discuss an application of the 

NN ensemble approach to emulating NCAR CAM LWR.  
Conclusions are presented in section 3.   

II. APPLICATION OF THE NN ENSEMBLE APPROACH TO THE 
NCAR CAM LONG WAVE RADIATION 

  Here we will describe an application of the NN ensemble 
approach in the context and as an extension of our 
development of NN emulations for the climate model 
physical processes [4-6] we worked on for the last several 
years. In this study, we use as a test bed the NCAR CAM 
LWR (see [14] and the references therein).  NCAR CAM is 
a state-of-the-art widely recognized and used climate model. 
Our approach to developing NN emulations for NCAR 
CAM LWR is described in detail in [5]. 
 

A. NCAR CAM Long Wave Radiation 
The function of the LWR in atmospheric GCMs is to 

calculate heating fluxes and rates produced by LWR 
processes.  This LWR is physically and computationally 
very complex that makes it a major computational 
“bottleneck” in the NCAR CAM physics.  The method for 
calculating LWR in the NCAR CAM is based on the long-
wave radiative transfer equations in an 
absorptivity/emissivity formulation (see [14] and the 
references therein). 

The input vectors for the NCAR CAM LWR include ten 
vertical profiles (atmospheric temperature, humidity, ozone, 
CO2, N2O, CH4, two CFC mixing ratios (the annual mean 
atmospheric mole fractions for halocarbons), pressure, and 
cloudiness) and one relevant surface characteristic (the 
upward LWR flux at the surface).  The CAM LWR output 
vectors consist of the vertical profile of heating rates (HRs) 
and several radiation fluxes, including the outgoing LWR 
flux from the top layer of the model atmosphere (the 
outgoing LWR or OLR).   

The NN emulation of the NCAR CAM LWR has the same 
number of inputs (a total of 220) and outputs (a total of 33) 
as the original NCAR CAM LWR.  In the process of 
development of an optimal NN emulation for the LWR, we 
have trained the multiple emulating NNs that all have one 
hidden layer with 20 to 500 hidden neurons (the ensemble-2 
below).  For some topologies we trained a set of emulating 
NNs with different initial conditions for obtaining NN 
weights. For example, we trained fourteen different NN 
emulations with 150 hidden neurons (the ensemble-1 
below).  Varying the number of hidden neurons and initial 
conditions when calculating the NN weights, allowed us to 
demonstrate the dependence of the accuracy of 
approximation as well as its convergence on these 
parameters [5,6].  As a result, an optimal NN emulation with 
the accuracy of approximation sufficient for a decadal 
integration in the climate model has been obtained. 
However, the remaining/intermediate NN emulations also 
contain potentially valuable information about the CAM 
LWR.  In this paper, by using an NN ensemble, we used the 
majority of these intermediate NN emulations to improve the 

quality of approximation and, most importantly, of 
generalization (interpolation) provided by our LWR NN 
emulations.  

NCAR CAM is integrated for two years to generate 
representative data sets. The first year of the model 
simulation is divided into two independent parts, each 
containing input/output vector combinations.  The first part 
is used for training and the second one for validation 
(control of overfitting, control of a NN architecture, etc.).  
The second year of model simulation is used for creating a 
test data set, completely independent from both training and 
validation data sets.  This independent data set is used for 
testing only.  All approximation statistics presented in this 
section are calculated using this independent test data set. 
These statistics illustrate the accuracy of the interpolation 
provided by NN emulations.  All NN emulations and 
ensembles of the NN emulations are tested against the 
control which within our framework is obviously the 
original NCAR CAM LWR.  Mean difference B (bias or a 
systematic error) and the root mean square difference RMSE 
(a root mean square error) between the original LWR and its 
NN emulation, maximum and minimum errors, and 
distributions of errors over the entire test, are calculated. We 
used a conservative ensemble [15] with a simple (with equal 
weights for all members) averaging of the members 
providing the ensemble statistics.  

The final and the most important test is performed by 
estimating the accuracy of decadal climate simulation runs 
with single NN ensemble members and with the NN 
ensemble vs. the control climate run with the original NCAR 
CAM LWR.   
 

B. Ensemble-1 
The first NN ensemble presented in this paper (ensemble-1) 
is a set of 12 emulating NNs with 150 neurons in one hidden 
layer that have been trained with different initial conditions 
for NN weights.  Fig. 1 illustrates the spread (diversity) of 
the NN ensemble members in terms of the systematic and 
random interpolation errors. It shows the effectiveness of the 
ensemble approach in reduction of the systematic 
interpolation error (bias, the horizontal axis) and the random 
interpolation error (error standard deviation, the vertical 
axis), calculated on the independent test set.  The ensemble 
bias is equal to the average of member’s biases (because we 
use a conservative ensemble); however, the ensemble 
random error is smaller than the smallest member’s error.  
Fig. 2 demonstrates a significant effectiveness of the 
ensemble mean in reducing the magnitude of extreme errors 
or outliers.  The ensemble mean reduces maximum (vertical 
axis) and minimum (horizontal axis) errors by 2-3 times as 
compared to those of the worst ensemble member.   

Fig.3 shows that not only the magnitude of the largest 
errors or extreme outliers is effectively reduced by the 
ensemble but the entire error distribution is changed.  Fig. 3 
shows the tail of the distribution of errors.  It demonstrates 
that the number of larger errors (> 5 K/Day) for the  
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Fig.1. Ensemble-1 with 12 members.  Random interpolation error (error 

SD) vs. systematic error (Bias).  Asterisks – ensemble members, cross – 
ensemble.  

 
Fig. 2 Ensemble-1 with 12 members.  Extreme outliers positions, maximum 
error vs. minimum error.  Asterisks – ensemble members, cross – ensemble. 

 
Fig. 3 Ensemble-1 with 12 members.  Tails of the error distributions for 

ensemble members (thin solid, black lines) and for the ensemble (thick 
solid, red line).  The logarithm of the number of errors (vertical axis) with 

respect of the magnitude of the error (horizontal axis).  # of Errors 
correspond to the number of points with the errors of a magnitude indicated 

on the x-axis. 
ensemble is almost an order of magnitude smaller than that 

for the worst ensemble member. 

C. Ensemble-2 
The second ensemble (ensemble-2) is composed of 14 
members including emulating NNs that all have one hidden 
layer with the different number of hidden neurons, from 20 
to 500.  Figs. 4-6 contain info similar to that of Figs. 1-3 but 
presented for the ensemble-2.  The comparison of these two 
sets of figures shows that the ensemble-2 is quite effective in 
reducing the errors for the ensemble mean but a bit less 
effective in this respect than the ensemble-1.  

 
Fig. 4 Ensemble-2 with 14 members.  Random interpolation error (error 
SD) vs. systematic error (Bias).  Asterisks – ensemble members, cross – 

ensemble.  

 
Fig. 5 Ensemble-2 with 14 members.  Extreme outliers positions, maximum 
error vs. minimum error.  Asterisks – ensemble members, cross – ensemble. 

 

D. Ensemble-3 
So far, we presented the errors of NN emulations 

calculated against the NCAR CAM original LWR on the test 
dataset. The next and most important step is validation of the 
NN ensemble approach for NCAR CAM long-term decadal 
climate simulations. This step allows us to arrive at an 
overall conclusion on the practical efficiency of the NN 
ensemble approach for climate simulations.  
We have selected a sufficiently diverse group of six NN 
emulations from the ensembles-1 and-2.  These six members 
constitute the ensemble-3.  For the ensemble-3, the statistics 
calculated for the ensembles-1 and-2 on the test data set are 
also calculated.  In addition, climate simulations have been 
run with NCAR CAM for 25 years with each of these six 
ensemble members (each of the six LWR NN emulations).  

As it is usually done for climate simulations, the first 10 
year simulated fields, that potentially include the climate 
model spin-up effects, are not used for the analysis of the 
simulation results so that the remaining 15 year period is 
used for the purpose. The results (climate fields and 
diagnostics) of each simulation are compared with the 
control climate run of NCAR CAM performed with the 
original LWR. The climate simulation errors (systematic, 
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Fig. 6 Ensemble-2 with 14 members.  Tails of the error distributions for 

ensemble members (thin solid, black lines) and for the ensemble (thick 
solid, red line).  The logarithm of the number of the errors (vertical axis) 
with respect of the magnitude of the error (horizontal axis). 

 
random, maximum, and minimum) have been calculated for 
each ensemble member.  Then the NN ensemble climate run 
has been performed. For this run, six NN emulations are 
applied and the LWR outputs are calculated as the mean of 
these six NN emulation outputs, at each time step and at 
each grid point throughout the model integration. The results 
of this NN ensemble climate run are shown by crosses in the 
following figures.  

For consistency with the discussions in sub-sections 2.A-
C, we present the validation statistics using the independent 
test set for the ensemble-3.  We also present the validation 
statistics for ensemble-3 for the 15-year climate simulation.  
Figs. 7 – 10 show the statistics for the net surface LWR flux 
(FLNS in W/m²). Figs. 7 and 9 show the time averaged (15-
year mean) errors for the NCAR CAM runs, with LWR NN 
emulations, calculated against the control run with the 
original LWR. Figs. 8 and 10 show the errors calculated on 
the independent test set used in sections A and B.  Figs. 7 
and 8 show the spread (diversity) of the NN ensemble 
members in terms of the systematic and RMS interpolation 
errors (in the case of small bias the RMS error is almost 
equal to the random error). We see the effectiveness of the 
NN ensemble approach in reduction of both the systematic 
interpolation error (bias, the horizontal axis) and the RMS 
interpolation error (the vertical axis) for the climate 
simulation and test set calculations.  The NN climate 
ensemble (Fig. 7) bias is very small; the ensemble’s random 
errors are smaller than the smallest member’s error.  For the 
NN ensemble errors for the test set (Fig. 8), the results are 
close to that of Fig. 7.  

Figs. 9 and 10 show similar comparisons for the magnitude 
of the largest errors or extreme outliers.  The NN ensemble 
effectively reduces these extreme errors. Figs. 11 – 14 show 
the same comparison statistics for the net LWR flux at the 
top of the model atmosphere (FLNT in W/m²). The FLNT 
results show the effective reduction of errors similar to that 
of FLNS. It is noteworthy that FLNT or OLR is well 
correlated with precipitation so that the positive impact from 
using the NN ensemble on FLNT is reflected in 
precipitation.  

 
Fig. 7 Ensemble-3 with 6 members.  Climate simulations statistics: RMS 

interpolation error vs. systematic error (Bias) for FLNS (see text).  Asterisks 
– ensemble members, cross – climate NN ensemble results; DJF stands for 

December-January-February (winter).   
 

 
Fig. 8  Ensemble-3 with 6 members.  RMS interpolation error vs. 

systematic error (Bias) for FLNS (see text) on independent test set.  
Asterisks – ensemble members, cross – NN ensemble.   

 
The comparisons of statistics estimated on an independent 
test set and for climate simulations show that the relative 
improvements in the accuracy of climate simulations are 
similar to (or even better than) those estimated on an 
independent test set.  The use of the NN ensemble in climate 
simulation significantly reduces the systematic error (bias); 
it also reduces the random error to the value smaller than 
that of the best individual ensemble member.  The same true 
for the extreme errors.  

III. CONCLUSION 
In this paper, we have presented a new application of the NN 
ensemble approach.  We have applied the NN ensemble 
approach to improve the accuracy of climate simulations that 
use NN emulations of the model physics [5].  In particular, 
we applied this technique to NN emulations we developed 
for the LWR of NCAR CAM. We have shown that 
practically all individual NN emulations that we have trained 
in the process of development of an optimal NN emulation 
for LWR, can be used, within the NN  
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Fig. 9 Ensemble-3 with 6 members.  Climate simulations statistics: 

extreme outliers positions, maximum error vs. minimum error for FLNS 
(see text). Asterisks – ensemble members, cross – climate NN ensemble 

results; DJF stands for December-January-February (winter).   
 

 
Fig. 10  Ensemble-3 with 6 members.  Extreme outliers positions, 

maximum error vs. minimum error for FLNS (see text) on independent test 
set.  Asterisks – ensemble members, cross – NN ensemble.   

 

 
Fig. 11 Ensemble-3 with 6 members.  Climate simulations statistics: RMS 

interpolation error vs. systematic error (Bias) for FLNT (see text).  
Asterisks – ensemble members, cross – climate NN ensemble results; DJF 

stands for December-January-February (winter).   
 
 
 
 
 

 
Fig. 12 Ensemble-3 with 6 members.  RMS interpolation error vs. 

systematic error (Bias) for FLNT (see text) on independent test set.  
Asterisks – ensemble members, cross – NN ensemble.   

 
Fig. 13 Ensemble-3 with 6 members.  Climate simulations statistics: 

extreme outliers positions, maximum error vs. minimum error for FLNT 
(see text). Asterisks – ensemble members, cross – climate NN ensemble 

results; DJF stands for December-January-February (winter).   
 

 
Fig. 14 Ensemble-3 with 6 members.  Extreme outliers positions, 

maximum error vs. minimum error for FLNS (see text) on independent test 
set.  Asterisks – ensemble members, cross – NN ensemble.   
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ensemble approach, for improving the accuracy of climate 
simulations, namely for: (a) significantly reducing the 
systematic and random interpolation error, (b) significantly 
reducing the magnitudes of the extreme errors or outliers 
and, (c) in general, significantly reducing the number of 
large errors.  The most important overall result of this study 
is that the NN emulation ensemble approach provides a 
positive impact on climate simulation. However, at the next 
step of this development we have to validate the climate 
simulation with NN emulations not only against the control 
simulation with the original LWR, as it is done in this paper, 
but also against observations.   
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